alpha(1B) adrenergic receptors in gonadotrophin-releasing hormone neurones: relation to Transport-P.

نویسندگان

  • S Al-Damluji
  • W B Shen
  • S White
  • E A Barnard
چکیده

1. Peptidergic neurones accumulate amines via an unusual uptake process, designated Transport-P. [(3)H]-prazosin binds to alpha(1) adrenoceptors on these cells and is displaceable by unlabelled prazosin in concentrations up to 10(-7) M. However, at greater concentrations of prazosin, there is a paradoxical accumulation of [(3)H]-prazosin which we have attributed to Transport-P. Uptake of prazosin via Transport-P is detectable at 10(-10) M prazosin concentration, is linear up to 10(-7) M and at greater concentrations becomes non-linear. In contrast, in noradrenergic neurones, noradrenaline uptake is linear and saturates above 10(-7) M. In noradrenergic neurones and in non-neuronal cells, there is no uptake of prazosin in concentrations up to 10(-6) M, suggesting that Transport-P is a specialised function of peptidergic neurones. 2. Using a mouse peptidergic (gonadotrophin-releasing hormone, GnRH) neuronal cell line which possesses Transport-P, we have studied the interaction of alpha(1) adrenoceptors with Transport-P. Polymerase chain reactions and DNA sequencing of the products demonstrated that only the alpha(1B) sub-type of adrenoceptors is present in GnRH cells. 3. In COS cells transfected with alpha(1b) adrenoceptor cDNA and in DDT(1) MF-2 cells which express native alpha(1B) adrenoceptors, [(3)H]-prazosin was displaced by unlabelled prazosin in a normal equilibrium process, with no prazosin paradox in concentrations up to 10(-6) M. In DDT(1) MF-2 cells, [(3)H]-prazosin was displaced likewise by a series of alpha(1) adrenergic agonists, none of which increased the binding of [(3)H]-prazosin. Hence, the prazosin paradox is not due to some function of alpha(1) adrenoceptors, such as internalization of ligand-receptor complexes. 4. In neurones which possess Transport-P, transfection with alpha(1b) adrenoceptor cDNA resulted in over-expression of alpha(1B) adrenoceptors, but the prazosin paradox was unaltered. Thus, alpha(1) adrenoceptors and Transport-P mediate distinct functions in peptidergic neurones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid nongenomic effects of oestradiol on gonadotrophin-releasing hormone neurones.

That oestradiol can have both negative- and positive-feedback actions upon the release of gonadotrophin-releasing hormone (GnRH) has been understood for decades. The vast majority of studies have investigated the effects of in vivo oestrogen administration. In the past decade, evidence has accumulated in many neuronal and non-neuronal systems indicating that, in addition to traditional genomic ...

متن کامل

Presence of oxytocin receptors in the gonadotrophin-releasing hormone (GnRH) neurones in female rats: a possible direct action of oxytocin on GnRH neurones.

Gonadotrophin-releasing hormone (GnRH) neurones constitute the final output pathway of a neuronal network that controls the preovulatory luteinising hormone (LH) surge and ovulation. Throughout the reproductive cycle, several neurotransmitters stimulate and inhibit the activity of GnRH neurones, including oxytocin. The central administration of oxytocin antiserum abolishes the pro-oestrous LH s...

متن کامل

The effect of equine chorionic gonadotrophin (ecg) injection combined with prostaglandin F2α (pGF2α) and gonadotrophin releasing hormone (GnRH) treatment on reproductive performance of Zandi ewes during non-breeding season

In this study, we aimed to investigate reproductive performance in estrus-induced Zandi ewes treated with equine chorionic gonadotrophin (eCG) injection in combination with prostaglandin F2α (PGF2α)and gonadotrophin releasing hormone (GnRH) during non-breeding season. The estrous cycle was synchronized using controlled internal drug release (CIDR) for 12 days. The ewes were randomly assigned to...

متن کامل

Temporal and Spatial Regulation of CRE Recombinase Expression in Gonadotrophin-Releasing Hormone Neurones in the Mouse

Gonadotrophin-releasing hormone (GnRH) neurones located within the brain are the final neuroendocrine output regulating the reproductive hormone axis. Their small number and scattered distribution in the hypothalamus make them particularly difficult to study in vivo. The Cre/loxP system is a valuable tool to delete genes in specific cells and tissues. We report the production of two mouse lines...

متن کامل

Glucocorticoids induce transcription and expression of the alpha 1B adrenergic receptor gene in DTT1 MF-2 smooth muscle cells.

Steroid hormones modulate physiological processes by a number of mechanisms including regulation of gene expression. We wondered if glucocorticoids might induce expression of alpha 1 adrenergic receptors, which could contribute to the increased sensitivity of vascular smooth muscle to catecholamines that may occur with glucocorticoid excess. We examined the effects of dexamethasone on the expre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • British journal of pharmacology

دوره 132 1  شماره 

صفحات  -

تاریخ انتشار 2001